
LUMA with OOUX

The combination of Object-Oriented User Experience (OOUX), LUMA
forms a comprehensive system for addressing, delivering, and
maintaining complex and competing requirements in the design and
development process.

Team Lead:Michael Long (UX Delivery Associate Director, Design Director)
Devs: Diego Armando, Lucas de Melo, Arthur Annibal
Designers: Julieta Poy, Jesica Nuñez, Michelle Borgström
PM:Marcelo Clarens

Considering Code:While the focus of this paper is on OOUX systems, it also extensively
discusses code-related matters. The reason being, this manuscript specifically addresses the
development and application of a design library that is intricately linked to themed Material UI
components in a codebase.

The Issue: Previous software solutions have displayed a lack of professional rigor, falling short
of meeting intricate universal requisites, and demonstrating suboptimal performance.

- The development process is unable to faithfully implement or construct the original
designs

- The resulting products lack accessibility, hindering their usability
- The progress of development is impeded by the burdensome need to create

individualized versions for both mobile and desktop platforms
- The software solutions are not compatible with older browsers, limiting their

accessibility across diverse user groups
- The performance of the software products is impaired due to an accumulation of

unplanned patches and workarounds during the development phase
- Despite being developed on robust, professional frameworks like React Material UI and

React Bootstrap, which are designed to accommodate complex requirements such as
accessibility and responsiveness, these essential features are conspicuously absent in
the final product

- Product language localization is not considered until the final stages of development
where it creates considerable issues



If the final software looks significantly different from the initial designs
and you're spending time at the end of development fixing issues and
addressing complex requirements, using the methods talked about here
will help solve your problems.

Challenge Statement: Our objective is to merge UI/UX and Front-End Development with a
holistic framework that caters to intricate UX demands, such as usability. The focus is on
facilitating the creation of top-notch, efficient products, while also curbing engineering costs
to optimize time and financial resources.

Problem Statement:When looking back at past work, we noticed that our initial, simple design
drafts did not align with Material UI's standard design patterns. These drafts were supposed to
be transformed into standardized forms and graphics that would work well on both desktop
and mobile devices. Unfortunately, we overlooked this mismatch when moving from simple
drafts to more detailed designs. As a result, our team unintentionally made decisions that
strayed too far from the framework, proving challenging to correct at the end of the process.

Our decision to implement an OOUX strategy paired with Material UI
stems from the need to construct a web based application using
fundamental web components such as buttons, forms, and graphs. It's
essential to note, however, that for less conventional interfaces— like
XR, video games, art tools, or any interface requiring more than the
standard web components — the OOUX approach is not recommended.

Strategy Statement: Our suggested plan for a smooth design and development process
involves providing designers with a toolkit in Figma. This toolkit mirrors our company's Material
UI design style (colors, typography, etc), components, and charts, complete with component
states and requirements. This strategy meets Material UI's high standards and makes sure
every component is accessible and responsive.

By giving designers a set of Figma components that strictly follow these guidelines, we can
shape our product more effectively. This method ensures we stick to the Material UI
framework and meet all user experience needs. In the past, designers have created "design
systems" without considering the technology underneath. But when we tried to get these
"design systems" up and running, we encountered bugs, failed to meet accessibility needs, and
ended up with a less professional product.



Setup OOUX Design & Development:

The designer and developer will build a Material UI theme within an existing library, making it
easier to apply the company's brand to all components. This can be done simply, even in
complex systems. There are plenty of excellent Material UI toolkits available online. These
toolkits have clean, well-documented codebases and can be licensed for use. It's crucial to
match the design and the codebase. We looked at several commercial libraries in detail to pick
the best resources. To improve these systems, we could consider adding the DevExpress Table
plugin and the ChartJS Graphing library or other similar libraries.



Resources:

Material UI
https://mui.com/store/

React Bootstrap
https://react-bootstrap.netlify.app/

Semantic UI
https://react.semantic-ui.com/

Material UI

Great resources to start with Material UI:
https://mui.com/store/

Combining resources from different
dashboards is often the best approach.

Material UI Theming
https://mui.com/material-ui/customization/t
heming/

UI
Synchronizing Design and Development
with a Theme
Design Task:We are starting with the corporate look and feel. We need to create a theme for
our React Material UI library. Our goal is to work with development so that we can have a
completed Material UI theme IN CODE based on the following design theme.

https://react-bootstrap.netlify.app/
https://mui.com/store/


Many Figma files already include all these Material UI variables and components. These match
the coded components represented in design kits. So, the designer's first job is to set up
basics like fonts, colors, and corners.

Note for Developers: Developers, you are presented with two choices here. First, you can
encapsulate all components within a library, which will then act as a dependency. Alternatively,
you can opt to utilize a dashboard filled with a variety of coded components. Creating and
maintaining a library that works as a dependency might appear more sophisticated, but it can
become problematic if the dependencies span across multiple applications. This is because
developers frequently resort to makeshift solutions in the library application, inadvertently
generating issues where automatic updates are superseded by bugs appearing in other
applications reliant on the same library.



Personally, I favor a basic dashboard wherein the components are presented but not
incorporated into a library. Although these dashboards usually call for multiple dependencies,
they are simpler to dissect and demand fewer corrections. We can encapsulate and break apart
the library later into smaller dependencies. If you have ever attempted to update an application
to a newer version of an underlying framework (like Material UI), it still requires some time. The
resources for a small company to accomplish the same task smoothly while maintaining
complex requirements can quickly get out of control. Even well tested frameworks built with
considerable resources and the best developers find it difficult to create smooth upgrade
cycles.

So, our first step is to transfer the basic colors and typography from our design into the six
basic Material UI variables (primary, secondary, info, error, warning, success)



Figma After Color and
Typography Added

The practical implications of this approach are readily apparent in the end product. Alterations
made to these variables in Figma are visible in individual components and layouts, thus
providing real-time visualization of the changes. Many of these systems come equipped with



an array of layouts, which can serve as excellent references for your design, offering a coherent
and uniform design across all user interfaces.

The subsequent step involves translating these variables into code. This process is relatively
straightforward due to the consistent use of the same variables across both Figma and our
coding environment. Consequently, we just need to adjust the Material UI theme file in the
codebase to reflect these changes. This ensures that any alterations made in the design will be
accurately represented in the final product, promoting a cohesive user experience across all
platforms.



Create React Material UI Theme

Altering a React Material UI Theme to reflect your corporate aesthetic is straightforward and
can be accomplished in a few steps. All modifications are made in the theme configuration file,
typically referred to as “theme.js” in most React Material UI projects.

The Cyclical Theme Development Process: Bridging Design and Development

The most effective way to craft a theme is through phased development. Separating the
theme development process into phases and goals can expedite your design process. Each



goal should be jointly accomplished by the designer and developer before transitioning to the
subsequent phase. In many instances, the "Theme File" phase might suffice for implementing a
brand. The following outlines our working methodology within the Material UI theming system:

Goal 1: Theme File

The Material UI theme file encompasses all fundamental variables such as color, spacing,
shadows, and more. It's commonplace for the app to toggle between theme files to produce
varying aesthetics, such as dark and light versions, each encapsulated in distinct theme files.

Goal 2: Global Overrides

Global overrides can be implemented to impact all components simultaneously. For example, if
there's a requirement to alter all textboxes concurrently, this modification should be executed
through a global override.

Goal 3: Component-Level Overrides

There could be instances where a specific component like a textbox in the search menu needs
to have a unique look. In such scenarios, it's necessary to introduce an override at the individual
component level to achieve this variation.

By adopting this phased approach to theme development, we can maintain a balance between
overall design consistency and the need for specific customizations, leading to a more
harmonious and user-friendly interface.

Tips for Efficient Theme Development

Throughout our journey, we've built intricate themes for leading Fortune 500 companies using
this process and successfully fitted diverse brands into the Material UI framework. However,
we did encounter some missteps which led us to refine our approach. Here are key insights on
how the process should be managed:

1. Material UI utilizes an array of lighter and darker hues within its color variables. While
this isn't a strict requirement, it's crucial to understand that not all brands align neatly
with this lighter and darker system. Instead, directly assigning colors to variables often
proves to be a more efficient approach. It is recommended to maintain a base theme
that accommodates both systems for flexibility, but modifying every component to fit
this structure can be time-consuming.



2. Material UI components typically expect six fundamental color variables (primary,
secondary, error, info, warning, and success). From a designer's standpoint, it is
important to consider your design within this framework. Creating new variables or
repurposing colors such as using the red error color elsewhere may render your
component illogical, potentially leading to increased engineering costs.

3. Testing your design immediately by integrating your variables directly into the code is
key. This allows you to review all components (buttons, pages, settings, forms, etc.) to
ensure any issues are promptly addressed. This is of utmost importance - if you can't
immediately align your codebase with what you've designed in Figma, you might be
working with poorly structured resources and may need to find alternative options.

4. Your color variables will impact your accessibility score. Attention must be given to the
contrast between the background and foreground to ensure legibility, and the coded
result should be tested promptly.

5. Your coded and themed Material UI Design system should serve as the "source of truth"
for both design and development. Figma should be used to design from real
components, rather than deriving real components from Figma. For complex
components with infinite configurations, such as tables, designers should clearly
indicate the state or configuration they are utilizing in the design. Deviations from the
framework are acceptable as long as the consequent engineering costs are
acknowledged and reviewed with the engineering team in advance.

6. There could be areas that fall outside the OOUX framework and need customized
design. For instance, a unique feature like a facial recognition video component may
require base components (atoms) that do not currently exist. While this is generally a
small portion of most modern web applications, tracking these areas is vital as they
could necessitate substantial engineering resources.

Goal for UI Design System
FIGMA DESIGN LIBRARY IS
100% ACCURATE TO CODE



IN ALL STATES AND CONFIGURATIONS

Requirements Complete from UI phase:

● Mobile
● Accessibility
● Responsive
● Old Browser Support (Polyfils)
● Language Localization
● IOs and Android ()Support

● Brand Styles
● Component States already exist
● Component’s already support all

states shown in design (important
for tables)

The theme UI phase is about creating the
framework system for fast and very accurate
(mobile, accessible, etc…) prototyping in later
phases.



UX
Building from your theme

Business Need - Design Thinking, LUMA
Solve for client, business area, create a new
component.
Armed with a strong design library in both code and Figma, which matches the brand, covers a
wide range of needs, and syncs with coded Material UI components, we're ready to go.
Because our Figma designs are based on coded Material UI parts, we know our design system
can handle complex needs.

Why OOUX Leads to Better UX

Think about all the unique and often conflicting requirements each design change involves.
Starting with a coded Material UI theme mirrored in Figma and then designing an application
using these pre-coded Figma parts, makes the process much quicker and simpler.

How OOUX Simplifies the Designer's Job

OOUX makes the designer's job easier by letting them concentrate more on the end-user and
unique features that will make the product stand out. Basic components and proven design
patterns, like login processes or simple user settings, are already well-tested and outlined.

In our trucker app, special features like our AI chatbot mechanic, clear display of the truck's
status, and a direct link to the mechanic are what will make our app special. These unique
features, along with the efficient design processes OOUX provides, will make our app not only
practical but also easy to use and competitive in the market.





Focusing Designers on User Needs and Workflows:

This OOUX approach enables designers to concentrate on user needs and workflows
rather than recreating standardized components like buttons, form fields, tables, and
established design patterns.

Streamlining the Process for Developers:

Because the design is closely integrated with the development, developers can
efficiently build, modify, and maintain our application. This synchronization frees up
time to focus on critical features. In the context of our trucker application, most
engineering effort will be dedicated to the AI chatbot and the real-time status of the
truck and load.



Facilitating LUMA Design Exercises:

With a simplified design library at our disposal, we can initiate our Trucker Application
LUMA design process. The "Looking" and "Understanding" exercises form the most
beneficial parts of LUMA within the constraints of OOUX.

OOUX is engineered to create the fastest path to usable, testable prototypes in Figma
or in code. Realistic prototypes yield the most accurate user feedback and provide a
more tangible sense of the application, making it easier to visualize complex
requirements coalescing.

UX Initial Phase:
Paving the Way to an Effective Application

At the start, our main goal is to set a clear direction and lay the foundation for the app. It's
important to build momentum and move towards a working prototype quickly, instead of
getting stuck in research or analysis (analysis paralysis). As the prototype develops, we'll
identify where we might need to do more LUMA exercises. These exercises are often more
useful if they're done throughout the prototype development, rather than just at the start. At
the beginning of the development process, we put a lot of effort into the UI to speed up the
creation of the prototype.

LOOKING - FLY ON THE WALL

We start by forming a workgroup of experts who know the subject matter inside and out. In our
case, we need two truck drivers and a mechanic who can help us understand what happens
when a truck breaks down. We also need relevant documents, like truck manuals and
paperwork, to help our designers grasp the process in detail. From this, we can start to draft
some initial requirements, create user flows, and come up with questions that we need to
answer. This will lead to the creation of two important documents: one for the questions we



need to ask the experts, and one for the requirements. We came up with the following
questions for the experts after our first interview.

Questions

Requirements Documentation:

Corralling feedback from LUMA and Subject Matter Experts (SME) into a comprehensive plan
can be challenging. I prefer to channel all feedback into a requirements document. This
document also functions as a reference for auditing all prototypes and can be useful when
developing a testing plan.



UNDERSTANDING - INTERVIEWING UNDERSTANDING -
IMPORTANCE/DIFFICULTY MATRIX

Answering questions quickly, adding in possible needs (that can be tweaked later), and
deciding on what's most important with the experts helps the design process go smoothly. The
experts should look at any changes to the design documents and give their thoughts. These
ideas are then talked about in the next meetings. This back-and-forth chat keeps happening
once it starts.

Material UI and similar well-established frameworks provide reliable and well-tested design
pattern options. These can be modified to meet most needs. That's why the 'Lego' strategy of
OOUX works well for these types of apps.



UX Secondary Phase
Refining UX artifacts with LUMA

As the UX designer moves forward with the interviews, requirements will be sorted based on
user roles. There can be many personas, so it's easier to start with the main one (in this case,
the trucker), then make a list of other personas to think about later. The most helpful personas
align to user roles, each giving a separate view on the app. This is key since many personas will
have similar needs. It's easier to address these needs in the main persona first. This way,
designers don't end up creating different workflows and solutions for each persona.



UNDERSTANDING - PERSONA MAPPING

Persona 1 : Trucker

During interviews, it becomes easy to spot different personas when certain needs come up
that aren't a fit for the main trucker persona. For instance, if a task involves adding trucks to the
system, it's more likely to be for an administrator or a dispatcher who works for the trucking
company. This task doesn't fit the trucker persona since you wouldn't want individual truckers
adding more trucks to the system. These needs suggest there should be a new user role in the
app.



Persona 2 : Admin Trucker Dispatch Persona

During another interview, a trucker expressed a desire to send pictures to the mechanic
through chat. To facilitate this, the mechanic would need to have a designated contact point
within the application and be responsible for updating this information. This implies that the
mechanic shop owner would also need a unique 'view' into the application and a persona.

Persona 3 : Mechanic Shop Owner

We are now at a point where we can integrate personas into our requirements document:



UNDERSTANDING - EXPERIENCE DIAGRAMMING

It is important to diagram the experience early in the application. The experience diagram is
easy for our SME to understand in interviews and review. It is also a good roadmap for the
initial prototype screens.

Over time, the user experience should expand and become more detailed as interviews reveal
more required features.





Create a bad prototype

Set expectations that the initial prototypes may not look perfect or function flawlessly. The goal
at this stage is to generate a tangible artifact that we can begin to assess, critique, and improve
upon. The concept of 'failing fast' is highly valued in the product development process, as it
encourages quick iterations and adjustments based on valuable feedback.

The beauty of OOUX (Object-Oriented UX) methodology and utilizing a unified design system
(in this case, Material UI with Figma) is that it allows designers to quickly assemble high-fidelity
prototypes with real-world constraints and complexity. These prototypes can be easily adjusted
to reflect different screen sizes and device orientations, showcasing how components will
behave across different user scenarios.



In our scenario, the designer would go through the library of themed components available in
Figma, and assemble a mobile and desktop-friendly prototype within a short timeframe. For
example, a menu component can be shown in different configurations from mobile to desktop,
demonstrating the responsive nature of the design. This rapid prototyping ability reduces the
time between idea generation and testing, thus accelerating the overall product development
process.



Initial mobile and desktop Figma prototypes



UX Third Phase

Turn a bad prototype into a good prototype.

Turning a preliminary prototype into a refined one is a crucial phase of the design process. This
involves continuous iteration, testing, and obtaining feedback from SME, as well as end users.
This ongoing refinement and validation process helps ensure the prototype evolves to meet
users' needs effectively and intuitively.

We can help non-designers, like SME or stakeholders, to grasp the design decisions and
participate effectively in the design process with the speed of OOUX prototype development.
Their unique insights provide invaluable input to the prototype refinement process.

Designing an effective interface involves consideration of a multitude of factors and
constraints, many of which aren't immediately apparent to the end user. These factors can
include touch target sizes, text legibility, response times, animation quality, and more.
However, when these factors are carefully considered and appropriately implemented, they
contribute to an interface that "feels right" and is intuitive to use - even for users who aren't
aware of all the design considerations that have gone into creating the interface. This
reinforces the fact that great design often goes unnoticed by users - not because it's
unappreciated, but because it allows them to achieve their goals effortlessly and intuitively



Resolving disagreements about UX can be challenging, but there
are strategies to manage such situations effectively:

1. Facilitate open discussions: Encourage the stakeholders to openly discuss their
conflicting requirements and possible solutions. An environment that fosters open
communication can help people express their perspectives, leading to more
comprehensive solutions.

2. Use auditing test questions: When conflicting requirements emerge, incorporating
auditing test questions in the requirements document can help. These questions should
aim to resolve the disagreement at hand. If stakeholders can agree on what question is
being answered, it's a step towards finding common ground. Then ask each stakeholder
to use the prototype to answer the audit question.

3. Leverage fast prototyping: The OOUX framework is designed for fast prototypes. If
there's disagreement, create prototypes for both solutions and let stakeholders interact
with them. This hands-on approach can help people understand the pros and cons of
each solution better and can often clarify which solution is best.

4. Engage in collaborative decision-making: Having everyone in the workgroup present
when discussing solutions can be extremely valuable. This collective decision-making
process can ensure that all perspectives are considered and that any decisions made
have broad support.

When new requirements or deficiencies are identified in the design (such as the trucker's need
to define the state of the truck, trailer, and load in our application), the process of addressing
them should involve similar strategies. Open discussion, prototype iterations, and collaborative



decision-making will help to incorporate these new requirements into the design in a way that
satisfies all stakeholders.

Once the initial prototype has been developed, other issues become apparent. For example, the
trucker workgroup has some disagreements regarding the most suitable metrics to be displayed
on the front page. Given the application's mobile-first design approach, it is necessary to
structure the application from simple to complex to accommodate the user's experience on
smaller screen sizes. This means the initial dashboard should be limited in that amount of data it
can display for mobile users. This is a good place to explore the prioritization of features with
another importance/difficulty matrix. Any LUMA exercise might be required in this part of the
process. It all depends on the problem that needs to be solved.

UNDERSTANDING - IMPORTANCE/DIFFICULTY MATRIX

The initial dashboard view should present enough information to provide the trucker with an
overview of their vehicle's status and their current journey. Each metric should be designed
around a "click or don't click" principle. For instance, if the dashboard indicates that the truck is
stationary and is behind schedule, that is sufficient information for the trucker to realize that they
need to delve deeper into this metric for more information.

Thus, the design approach emphasizes clarity and conciseness, presenting only the most
relevant information at first glance while offering deeper layers of information for those who
need it. This approach helps to maintain an uncluttered, user-friendly interface while still
providing comprehensive data for users who require it.



Our initial prototype:

Our final prototype:



Through iterative cycles of interviews with subject matter experts, the team arrived at the final
prototype design. Several important changes are noticeable in this new version, showing an
evident response to user feedback.

● The operator's responsibilities, namely the truck, trailer, and load, are prominently
displayed on the front page of the dashboard. This positioning allows operators to
access essential information quickly and conveniently report any issues.



● Moreover, based on user feedback, the estimated time and distance metrics have been
given prime real estate on the front page. Operators and stakeholders indicated these
metrics as the most critical for their workflow and decision-making.

● One of the key changes in this iteration is the status report of the truck. The application
now promptly reports if the truck is stopped and needs repairs to the dispatch, enabling
swift communication and efficient decision-making.

● Furthermore, an inclusion of a truck log that captures everything reported about the
truck creates a centralized point for all historical data. This feature can serve as an
invaluable reference for mechanics, drivers, and the management.

This final prototype exemplifies a thoughtful approach to integrating user feedback. By striking
a balance between delivering essential information and maintaining a clean, navigable
interface, the design team ensures that the application remains user-centric. However, due to
the ever-evolving user needs and business contexts, the design team is dedicated to
consistently gather feedback and iterate on the design to stay abreast of the dynamic nature
of the trucking industry.

OOUX offers the invaluable gift of time, enabling the design and
development team to concentrate on features that will set the product
apart from the competition.

When contemplating this in detail, it's notable that this method mirrors the way many of the
most innovative products have been designed. Take Tesla, for instance. The first Tesla model
brought to the market two significant improvements: an efficient electric engine and an
innovative operating system. Yet, elements like seat warmers, tire rubber, and cup holders were
no different from those in a Honda Civic. The OOUX methodology covers the basic features
and design patterns, freeing up time and resources for elements that will differentiate the
product.

The final product meets all the requirements:



Requirement: Responsive from Desktop to Mobile



Requirement: Localization (in this case can be run in Spanish)



Accessibility: That application passes usability requirements.


